Tailoring Spin-Wave Channels in a Reconfigurable Artificial Spin Ice
نویسندگان
چکیده
منابع مشابه
Thickness dependence of spin wave excitations in an artificial square spin ice-like geometry
متن کامل
Emerging chirality in artificial spin ice.
Artificial spin ice, made up of planar nanostructured arrays of simple ferromagnetic bars, is a playground for rich physics associated with the spin alignment of the bars and spin texture associated with the magnetic frustration at the bar vertices. The phase diagram is exotic, showing magnetic monopole-like defects and liquid and solid phases of spins arranged in loop states with predicted chi...
متن کاملTopological frustration of artificial spin ice
Frustrated systems, typically characterized by competing interactions that cannot all be simultaneously satisfied, display rich behaviours not found elsewhere in nature. Artificial spin ice takes a materials-by-design approach to studying frustration, where lithographically patterned bar magnets mimic the frustrated interactions in real materials but are also amenable to direct characterization...
متن کاملReconfigurable nanoscale spin-wave directional coupler
Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation o...
متن کاملDynamics of artificial spin ice: a continuous honeycomb network
We model the dynamics of magnetization in an artificial analogue of spin ice specializing to the case of a honeycomb network of connected magnetic nanowires. The inherently dissipative dynamics is mediated by the emission and absorption of domain walls in the sites of the lattice, and their propagation in its links. These domain walls carry two natural units of magnetic charge, whereas sites of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Applied
سال: 2020
ISSN: 2331-7019
DOI: 10.1103/physrevapplied.13.044047